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The energy theory of hydrodynamic stability is applied to the viscous in- 
compressible flow of a fluid contained between two concentric spheres which 
rotate about a common axis with prescribed angular velocities. The critical 
Reynolds number is calculated for va.rious radius and angular velocity ratios 
such that it is certain the basic laminar motion is stable to any disturbances. 
The stability problem is solved by means of a toroidal-poloidal representation 
of the disturbance flow and numerical integration of the resulting eigenvalue 
problem. 

1. Introduction 
We consider here the stability of the steady laminar motion of a viscous in- 

compressible fluid contained between concentric rotating spheres that rotate 
about a common axis. This basic laminar motion is discussed in part 1 (Munson 
& Joseph 1971) and the geometry of the spherical annulus is shown in figure 1. 
Aside from the desire to know the critical Reynolds number, the stability con- 
sideration of this basic flow is of interest, on its own, for the following reasons: 
( a )  the flow field is completely bounded, unlike, for example, Poiseuille or Couette 
flow, and ( b )  the character of the basic flow is dependent on the Reynoldsnumber, 
again unlike Poiseuille or Couette flow. 

The energy (stability) problem is considered for the various basic flow cases 
considered in part 1 and the critical Reynolds number, p E ,  is determined accord- 
ing to the energy theory, SO that with Re < pE it is certain that the basic flow is 
stable to any disturbances (large or small). The Reynolds number, Re, is defined 
as Re = QOR:\v, where R,, the radius of the outer sphere, is taken as the charac- 
teristic length and Ro the characteristic angular velocity. In  general R, will be 
either Rl or Q2 (the constant angular velocity of the inner or outer sphere, re- 
spectively) depending on the relative influence of either sphere for the particular 
situation being considered. 

The energy theory, which has its beginnings with Reynolds (1895) and Orr 
(1907) around the turn of the century, has in recent times been greatly expanded 
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by Serrin (1959) and Joseph (1966). The method consists of considering the time 
rate of change of the kinetic energy of an arbitrary disturbance in the flow field. 
If the kinetic energy decreases as a function of time, we say the flow is stable. 

Bratukhin (1961) obtained an approximate linear stability result for flow 
between spheres with the outer sphere stationary and the radius ratio 
7 = RJR, = 0-5. Although he used the Stokes flow solution (lowest-order 
perturbation solution) as the basic flow and obtained only an approximate 
solution to the linear problem, the results tend to support the idea that the linear 
and energy results for this sphere problem may be quite near one another. 
Hence the region of possible sublinear instability may be small. 

! 
I 

FIGURE 1. Spherical annulus. 

Because the basic flow between spheres is a function of two spatial variables, r ,  
8, the eigenvalue problem associated with the energy theory is a partial differential 
equation which cannot be reduced to an ordinary differential equation via the 
customary use of normal modes. This fact combined with the condition that the 
spherical annulus is a completely bounded region dictates a somewhat different 
approa.ch to the solution of the stability eigenvalue problem. Various convection 
instability problems (energy or linear theory) have been considered for bounded 
domains such as spherical shells (Chandrasekhar 1961, Joseph & Carmi 1966), 
a rectangular box (Davis 1967), and other geometries in the papers of Zierep 
(1963) and Ostrach & Pnueli (1963). A major difference between these convection 
considerations and the present shear flow between spheres is that, unlike the quies- 
cent fluid for the ‘ basic flow’ of the convection problems, the basic flow between 
the spheres is a function of two spatial variables, r ,  0, and is strongly dependent 
on the Reynolds number, Re. 
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2. Energy theory for stability of a viscous flow 
We consider the energy stability analysis of the basic laminar flow between 

concentric rotating spheres which was obtained in part 1. This general stability 
theory has its beginnings with Reynolds (1895) and Orr (1907) and essentially 
considers the time rate of change of the kinetic energy of an arbitrary disturbance 
in the flow field. If the kinetic energy always decreases as a function of time, 
we say that the flow is stable. In  recent times Serrin (1959) and Joseph (1966) have 
successfully extended the method and applied it to various problems. Included 
are a universal stability criterion for any bounded flow region and the incorpora- 
tion of temperature-driven buoyancy forces, in terms of the Boussinesq equa- 
tions. Other papers in which the energy method has been used for specific basic 
flows include those by Joseph & Carmi (1969), Shir & Joseph (1968) and Joseph 
&Munson (1970). 

Whereas the linear theory of hydrodynamic stability considers only infinitesi- 
mal disturbances and provides a critical Reynolds number, pL, such that the basic 
flow is definitely unstable for Re > pL, it can say nothing concerning the possibility 
of instabilities caused by disturbances of finite size. On the other hand, the energy 
theory considers any size disturbance (large or small) and provides a critical 
Reynolds number, p E ,  such that the flow is definitely stable to all disturbances 
ifRe < pE.  The energy theory, however, cannot predict instability - only stability. 

In order to obtain the energy (stability) equations, we consider the following. 
Let U(r) and u(r) denote the basic laminar flow and the arbitrary disturbance, 
respectively. The non-linear Navier-Stokes equations then become 

all 1 
at Re -+ (u .V) u + (u . V )  u+ (U . V )  u = - v p  +-v2u, 

V . u = O ,  rEV, 

U = O ,  reaK with boundary conditions 

Let ( )  designate integration over the volume between the two spheres. 
Multiplication of (1)  by u. followed by ( ) gives the following (see Serrin 1959), 

1 ~<lul2)+(u.VU.u) = -E(vu:vu). 1 
2 at 

1 - = max( - {u .VU .u)/(lVu12)), 
P E  h 

(3) 

(4) 

where h is the collection of smooth functions satisfying V .U = 0 and (2). Then 

20-2 
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It follows that if Re < pE the motion U is stable and any disturbance of this 
motion decays very fast. We obtain the energy limit, p E ,  as the smallest of the 
eigenvalues of the Euler equations of the functional given in (4). These are, 

9 . u  = (l/p)V+l-Vp: 

v . u  = 0 

and u = 0 on the boundaries. Here 9 is the rate of strain matrix -the symmetric 
part of VU. 

The task is to solve the eigenvalue problem given in (6) for the least eigenvalue, 
p = p E ,  where 9 is given by the basic flow as determined in part 1. The present 
problem, flow between rotating spheres, is different from the previously studied 
problems in regard to the following. Usually the basic flow considered is indepen- 
dent of the Reynolds number. For example, plane Couette flow and Poiseuille 
flow consist of a linear shear or parabolic profile, each of which (in non-dimen- 
sional form) is independent of Reynolds number. Hence, the rate of strain matrix, 
9, is independent of Re so that the Reynolds number appears (both explicitly and 
implicitly) only as the coefficient of the V2u term in (6). On the other hand, as 

Re 

FIGURE 2 

seen in part 1 the non-dimensional basic flow between rotating spheres is strongly 
dependent on the Reynolds number. Thus, it is not possible to consider ' a specific 
flow) for all Reynolds numbers and determine the critical Reynolds number 
directly from it. Rather we must consider the critical Reynolds number, p E ,  as a 
function of the basic flow Reynolds number, Re, as follows. We must determinep, 
so that it corresponds precisely with the Reynolds number of the basic flow 
being considered. That is, we want the intersection of the p = p ( R e )  curve with 
p = Re a5 indicated in figure 2. For Re < p, the fact that p > Re shows that this 
basic flow is stable, while for Re > pE the fact that p < Re shows that the critical 
value is lower than the value of Re being considered. The intersection of these two 
curves gives the critical Reynolds number, pE, for the particular geometry being 
considered. Hence for a given radius ratio, 7, and a givenratio of angular velocities, 
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,G = Q,jO,, we must determine the curve p = p(Re)  of the lowest eigenvalue 
of (6). The critical value where p(Re)  = Re (denoted p E )  then indicates the value 
of Re below which it is certain that the motion is stable to  any disturbances. 

3. Governing equations for energy theory in toroidal-poloidal 
representation 

We must solve the eigenvalue problem given by (6) where the rate of strain 
matrix, 9, has components 

au i a v  u d,, = -, d - - -+- d,, = ar e e -  r ae r ' 

I n  the above the basic laminar flow is written as U = (q, U', U,) = ( U ,  W ) ,  
where, in terms of the Legendre polynomial series representation given in part 1, 
we find tha,t 

[~cosB~,+sinOP,] ,  

V = c  -2 sinBP,, 
s ( 9 

W = c  - sinOP,, 
s t) J 

where ( )' = d/dr  and (-) = djdf3. Recall that  the basic flow is independent of the 
longitude, $. The basic flow component functions fs(r), gs(r),  are obtained in 
part 1 by a high-order perturbation result or by a numerical technique. 

One difficulty in solving this problem is that because the basic flow is a function 
of two spatial co-ordinates the governing equations are partial differential equa- 
tions. The more common situation is that the basic flow is a function of one spatial 
co-ordinate (as in Couette or Poiseuille flow or the similarity variable of boundary 
layers or Jeffery-Hamel flow) which allows the introduction of two wave-numbers 
and the reduction of the partial differential equations to ordinary differential 
equations. I n  the present case because the basic flow is independent of$, a wave- 
number in the $ direction, rn, can be used, but the two independent variables 
r ,  6' still remain. The second difficulty in solving (6) stems from the fact that, 
because of its complexity, the basic flow is known only numerically as discussed 
in part 1 .  Thus, the eigenvalue problem is solved by appropriate series representa- 
tion and numerical integration. 

Whereas a stream function and angular velocity function a,re used in the 
determination of the axially symmetric basic flow, similar functions cannot be 
used for the disturbance flow calculations because the possibility of non-axi- 
symmetric disturbances must be considered. I n  fact the critical eigenvalue is 
given by a non-axisymmetric disturbance motion with m = 1. 
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However, the partial differential equations can be reduced to an equivalent 
infinite set of coupled linear equations by taking advantage of the incompress- 
ibility condition, V . u = 0, and making an appropriate series representation. As 
discussed in Chandrasekhar (1961) any solenoidal vector, u, can be written in 
terms of two vector components, a toroidal component, T, and a poloidal com- 

(9) 
ponent, S, as 

where T and S are defined by their generating scalars Y, @ as follows: 

u = T + S ,  

It is then possible to expand the generating scalars in terms of spherical harmonics 
as 

where Yr(B, $) is the spherical harmonic defined by 

q y e ,  4) = eim+P/ml (cos 0) (12) 

and Piml(cos S) are the associated Legendre polynomiaIs defined as 

(13) 
(22- 1)l P$(,) = (1 - 22)b (d/dx)l+"- , x = COSB. 

2'1! 

Since the basic flow is independent of 4 we can consider a specific value of m, 
the axial wave-number, (rather than include a double sum over 1 and m) and 
determine the minimum eigenvalue over integer values of m as usual. With this 
treatment we have the disturbance velocity represented as 

The task, then, is to write the governing equations (6) in terms of the distur- 
bance flow component functions, q ( r ) ,  S,(r), truncate the system at some appro- 
priate value, 1 = L,, and solve this system'of equations. Sherman (1968) has used 
the toroidal-poloidal representation with a Galerkin approximation in dealing 
with convective flow within a sphere. 

The system of equations governing the disturbance flow component functions, 
I f ,  S,, is obtained as indicated below. More detail of their derivation can be ob- 
tainedfrom Munson (1970). To eliminate the 'pressure', p ,  we take the curl of (6) 
andobtain 

We substitute the toroidal-poloidal representation given by ( 14), multiply by 
appropriate functions, &?', !@', where the defining scalar for these vectors is 
unity, and integrate over the unit sphere. We use various orthogonal properties 

~ ~ r P ~ + p c u r l ( 9 . u )  = 0. (15) 
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of toroidal-poloidal vectors discussed in Chandrasekhar (1961) to obtain the 
following set of coupled linear ordinary differential equations: 

The corresponding homogeneous boundary conditions are 

In  the above 

After considerable algebra the integrals in (16), (17) can be evaluated and the 
equations written in the condensed form 

S , = S ; = T = O  for r = r ,  r = l .  (19) 

(20) F: 3 {F;, FZ, FT~> = r2curl[3. (T,  + sn)]. 

for 1 = m + l , m + 2 ,  ..., (22) 

where (21- 1 )  ( Z - m - l ) !  
241 - 1) (1  + m - I)!  * 

A$=- - -  

We have used the fact that q ( r )  = S,(r) = 0 for I < m and To(r) = So@) = 0 for 
m = 0 which follows from the condition that P$ = 0 for 1 < m. The variable 
coefficients Gld(r), G2Jr) ,  . . . , H5nt(r) are functions of the basic flow through the 
component functionsfs(r), gs(r) as follows : 

I 
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The numerical coeecients, ai 3 ajkn, pi = pjk,, are constants defined by integrals 
involving triple products of various associated Legendre polynomials and their 
derivatives. All of these coe%cients are defined and evaluated by Munson (1970). 
The integer Nt determines the order of truncation for the basic flow series used 
(see part 1 ) .  

As shown in part 1 symmetry of the basic flow with respect to the equator 
gives A(.) = gj(r) = 0 for I odd and j even. This, in turn, allows the stability 
problem to be reduced to two separate eigenvalue problems, (P.1) and (P.2),  
which can be solved independently; the lowest of the two eigenvalues obtained 
is the desired solution to the original problem. This reduction to two separate 
problems psovides eigensolutions (disturbance flows) which are symmetric 
or not symmetric with respect to the equator. Although the problem could 
be solved without the breakdown into two separate problems, a considerable 
saving in computer time is obtained via the two problems. Note that for m + 0 
(non-axisymmetric disturbances) the equations are complex (from the eimQ 

factor) and must be written in terms of the real and imaginary parts. 
As an indication of the structure of these governing equations we consider 

the following simple example. Assume the basic flow is truncated at  the lowest 
order, @ = sin28cos8g,(r), Q = sin28fo(r) (see part l ) ,  that the disturbance 
flow is truncated with L, = 2, 

u =T,+S,+T2+S,, 
and that m = 0. Although neither this basic flow truncation nor this disturbance 
flow truncation are sufficient to obtain meaningful results, the character of the 
governing equations can be seen. The problem for the eigenfunction components 
&(r) ,  T2(r) becomes 

2; T2 + p [ (  - 0-333fJr2 + 0.667fo/r3) 8, + (0.428g;/r2 - 0-286g,/r3) T,] = 0, 

+ ( - 0.2gy/r2 + 0-8g;/r3 - 0.8g;/r4 + 1.6g,/r6) S ,  + (O*6jA/r2 - l.i?fo/r3) T,] = 0, 
z$X, +p[ (  - 0.6g;/r2 + 0.4g,/r3) Sp + ( - 0.6gl/r2 + l.6g;/r3 - l-2g,/r4) S;  

with S, = S; = T, = 0 a t  r = 7, r = 1. A similar problem results for eigenfunction 
components T,(r), tS2(r). For higher-order truncations of the basic flow and the 
disturbance flow, the character of the equations remains the same, but the com- 
plexity increases rapidly. Recall that for m + 0 separate equations for the real 
and imaginary parts are used. 

Thus the task is to solve the system (19), (2 l ) ,  (22) as described above for the 
minimum eigenvalue, pE.  

4. Discussion of stability results 
4.1.  Critical Reynolds number 

For a given basic flow situation (that is given radius ratio, 7, and angular velocity 
ratio,,L) we must determine as the solution of the system (19), (21),  (22) thecurve 
p = p ( R e )  and then the intersection of this curve with p = Re. This must 
be done for various wave-numbers, m, and the minimum determined. 

With the toroidal-poloidal representation of the basic flow truncated a t  an 
appropriate value (see below), the system of equations being considered is a 
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finite set of linear ordinary differential equations with homogeneous two-point 
boundary conditions and eigenvalue p. This problem is solved numerically as an 
initial-value problem by a forward integration using the Runge-Kutta-Gill 
method (Harris & Reid 1964, Sparrow 1964). As with the truncation of the basic 
flow and its numerical solution (see part l),  the numerical solution of the dis- 
turbance flow equations becomes ‘longer ’ (in terms of computer storage neces- 
sary and computation time required) as the order of the  truncation is increased. 

1200 1 I I 
L,=2 

800 - 

P 

0 400 800 

Re 

FIGURE 3. Energy eigenvalue, p, as a function of basic flow Reynolds number, Re, for various 
orders of toroidal-poloidal disturbance flow truncation, Lt. q = 0.5, ,Z = 0, m = 0. 

Figure 3 shows typical results with 7 = 0.5, ji = 0,  and m = 0 for various trun- 
cations, L, = 2 ,3 ,4 ,5 ,6 .  The fact that the basic flow character is a function of the 
Reynolds number shows up in the fact that the p ( R e )  curves are not straight 
horizontal lines. (For plane Couette flow, for example, the p(Re) curve would be 
a straight line so that a figure such as this would not be necessary.) The conver- 
gence to the desired solution as the order of the truncation is increased can be 
seen in figure 4 where we have plotted the intersection of the pfRe)  curves with 
p = Re as a function of the order of truncation for various values of the axial 
wave-number, m. It can be seen that m = 1 gives the minimum value of p and 
that the toroidal-poloidal series representation has converged quite well for 
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L, = 7. These two characteristics were obtained for all six of the basic flow geo- 
metries considered. 

The critical Reynolds numbers p E  (that is, that value below which it is certain 
that the flow is stable with respect to any type disturbance, large or small) 
are listed in table 1 for the six cases of the basic flow considered. In spite of the 
various truncations involved and various inherent numerical errors, etc., it is felt 
that these results are accurate to at  least 5%. While it is difficult to obtain a 
‘precise’ estimation of this final accuracy, various error indications such as 
differences with respect to truncation in both the basic flow and the disturbance 
flow, difference with respect to interval size used in the Runge-Kutta-Gill inte- 
gration indicate that this estimate of the accuracy is, if anything, conservative. 

B. R. Munson und D. L). Joseph 
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0 1 2 3 4 5 6 7 

Lt 
FIGURE 4. Critical Reynolds number, p, as a function of toroidal-poloidal disturbance 
flow truncation, L,, for various circumferential wave-numbers, m. 7 = 0.5, @ = 0. Values 
ofm: A, 0; 0 ,  1 ;  0, 2;  v,  3. 

Radius ratio Angular velocity Wave-number, 
7 = R,/R, ratio, /.Z = R,/R, Critical Reynolds number, p~ m 

0.5 00 !2,R;jv = 440 1 

0.5 - 1  !2,Ri/v = 190 1 

0.5 - 0.5 !2,Ri/v = 220 1 

0.5 0 !2,R;/v = 360 1 

0.75 03 !2,RZ/v = 760 1 

0.75 0 R,R;/v = 690 1 

or !2,R,(R,-R,)/v = 220 

or !2,R,(RZ - R,)/v = 95 

or a, R,(R, - R,)/v = 55 

or QzR,(R,-RR,)/v = 90 

or 

or 

TABLE 1. Critical Reynolds number for flow between rotating spheres 

!2, R,(R, - R,)/v = 190 

a, R,(R, - R,)/v = 130 
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In  all of the previous discussion (both basic flow and stability consideration), 
the Reynolds number has been defined with R, as the characteristic length and 
QoR2 (where 0, is either 52, or 52%) as the characteristic speed. This was done to 
avoid confusion and to make the discussion less cumbersome. However, it is of 
interest now to use a more appropriate definition of Re. That is to let (R2- Rl), 
the gap size, be the characteristic length and SZj R j , j  = 1 or 2 ,  be the characteristic 
speed, depending on which sphere is the 'dominant' one. The critical Reynolds 
numbers with these new definitions are shown in the above table also. 

Not unexpectedly, the case where the inner sphere is stationary and the outer 
sphere rotates (li; = 00) is the most stable, and rotation of the inner sphere causes 
a reduction in the stability. Although there is a difference between the 7 = 0.5 
and q = 0.75 cases, it  is not great. Consideration of figures 4 to 7 in part 1 will 
provide an idea of the character of the basic flows whose critical Reynolds num- 
bers are given in table 1. 

It is noted that Payne (1964) has given a rigorous estimate of the Reynolds 
number below which the motion is surely stable. This estimate, based on bound- 
ary data and not the entire basic flow solution, is necessarily quite conservative 
and gives 52, Rglv = 0.26 rather than the value of 440 shown in table 1 for the 
case with 7 = 0.5, li; = co. 

4.2. DisturbanceJlow characteristics 
Along with the critical Reynolds number, it is of interest to determine the dis- 
turbance flow field that is obtained for the lowest eigenvalue. We consider the 
disturbance flow for the case where 7 = 0.5, ,6 = 0; the other cases have a similar 
character. With m = 1 (the axial wave-number that gives the lowest eigenvalue) 
and the toroidal-poloidal representation truncated a t  L, = 7, we can write the 
disturbance velocity components, (u, v, w) ,  as follows from (14): 

I even 

6 1  7 1  
v = 2 -P~[S~cos$-S:'sin$]- -P~[T;sin$+T~cos$], 

1=2 r t = l  r sin 8 
even odd 

1 6 1 7 1  w = c - -  P:[Srsin$+S,i'cos$]- x -~,~[T[cos$- Ttsin$], 
1 = 2  rsin8 1=1r 
even odd 1 6 1 7 1  w = c - -  P:[Srsin$+S,i'cos$]- x -~,~[T[cos$- Ttsin$], 
1 = 2  rsin8 1=1r 
even odd 

where S, E S; + is; and with 1 odd, j even are considered 
(the others being identically zero) because, it turns out, the problem (P. 2) gives 
the minimum eigenvalue. This implies that the disturbance field is not sym- 
metric with respect to the equator, as is the basic flow, but from the fact that 

= Tf + iTf. Only S,, 
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It is very difficult to picture the three-dimensional disturbance flow field 
because it is a function of all three spatial co-ordinates, unlike the basic flow 
which is independent of q5 and allows the introduction of the stream function in 
the meridian plane. Also the disturbance flow does not take on what may be 
called a ' completely spherical character ', so that precise picturing of the flow is 
difficult. It is possible, of course, to calculate particle paths as given by the dis- 
turbance velocity, but picturing these paths is difficult also. Also the fact that 
the actual particle path results from a superposition of the disturbance velocity 
(of unknown magnitude) on to the already complicated basic flow velocity makes 
such a procedure meaningless. 

However, there are two distinct characteristics of the disturbance flow which, 
if this energy disturbance were the actual physical disturbance, would be clearly 
distinguishable from the basic flow. These are that the disturbances consist of 
flows across both the equatorial plane and the pole. The fluid flows horizontally 
across the polar region in a specific q5 direction and vertically across the equator 
in an exchange of fluid between the northern and southern hemispheres. It should 
be noted that this flow across the poles is obtained only because m = 1 gives 
the critical wave-number. For any other value of rn it can be shown that u, v-+ 0 
as 8 -+ 0 ( since, form + 1, Py(cos8) --f 0 as 8 -+ 0) and there can be no flow across 
the poles. 

Although the disturbance flow field is very complex the basic character can be 
described as: ( a )  a horizontal flow across the poles, ( b )  two complex swirl type 
patterns near the equator and opposite each other longitudinally, and ( c )  a 
vertical flow across the equatorial plane. Further details are provided by Munson 
(1970). 

As mentioned previously this complex disturbance flow is superimposed on to 
the basic flow, but the distinctive character of the disturbance flow near the equa- 
tor and the poles should be observable in an experiment, provided the energy 
disturbances are obtained physically. 

5. Linear theory 
The above discussion has dealt with the energy (stability) theory for the flow 

between concentric spheres. It is of considerable interest to likewise consider the 
linear (instability) theory for the same problem. In general, the two limits (energy 
and linear) do not coincide-the resulting gap between the two being a region 
where possible sublinear instabilities may be present. As seen in Joseph & Munson 
( 1970), where the stability of a viscous fluid between rotating-sliding cylinders 
is considered, the effect of rotation can, in many instances, drive the energy and 
linear limits into coincidence or near coincidence. Although the linear theory 
has not been calculated, it would not be unexpected for the 1inea.r and energy 
results to be close, at  least for certain cases. 

The only previous consideration of the linear theory for flow between rotating 
spheres is that of Bratukhin (1961). He has considered an approximate solution 
with axially symmetric disturbances (m = 0) and with the basic flow given by the 
Stokes flow, or first-order (low Reynolds number) perturbation solution. He con- 
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sidered the case with 7 = 0.5 andb = 0 and obtained a critical Reynolds number of 
approximately 100; Q,R;lv M 400 or !2,R,(R,-R1)/v E 100. His disturbance 
flow is axially symmetric (since he only considered m = 0 )  and symmetric with 
respect to the equator-thus very similar to the basic flow pattern and unlike 
our energy disturbances. Although as Bratukhin says this value of 100 may not 
be very accurate (only axially symmetric disturbances are considered, the basic 
flow is not accurately given by the first-order perturbation solution, and his solu- 
tion of the stability problem is a series truncated at second order), it, nevertheless, 
indicates that the energy and linear limits for the flow between rotating spheres 
may be very nearly the same, perhaps identical under some conditions. For 
example, Bratukhin’s approximate linear result of !2,R,(R, - R,)/v M 100 for 
7 = 0.5, ,Z = 0 is quite near the energy result of 90 for this case (see table 1). A 
thorough investigation of the linear stability problem would be of considerable 
interest. 

This paper constitutes a portion of the Ph.D. thesis of B. R. Munson. The work 
was supported in part by the NSF Grant GK-1838. This support and the use of the 
CDC-6600 computer at the Numerical Analysis Center of the University of Minne- 
sota has been appreciated. 
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